HYCOM Code Development

Alan J. Wallcraft Naval Research Laboratory

2005 HYCOM MEETING

December 8, 2005

HYCOM 2.2 (I)

- Maintain all features of HYCOM 2.1
 - Orthogonal curvilinear grids
 - Can emulate Z or Sigma or Sigma-Z models
 - It is "Arbitrary Lagrangian-Eulerian", see: Adcroft and Hallberg, O. Modelling 11 224-233.
 - Explicit support for 1-D and 2-D domains
 - KPP or Kraus-Turner or Mellor-Yamada 2.5 or Price-Weller-Pinkel
 - Rivers as bogused surface precipitation
 - Multiple tracers
 - Off-line one-way nesting
 - Scalability via OpenMP or MPI or both
 - o Bit-for-bit multi-cpu reproducibility

- Alternative scalar advection techniques
 - Donor Cell, FCT (2nd and 4th order), MPDATA
 - FCT2 replaces MPDATA as standard scheme
- Vertical coordinate changes
 - Vertical remapping uses PLM for fixed coordinate layers
 - Thin deep iso-pycnal layers
 - Stability from locally referenced potential density
 - Spatially varying layer target densities
 - \diamond Different isopycnal layers in semi-enclosed seas

- Special halo exchange for tripole global grid
 - Arctic dipole patch on standard Mercator globe
 - Logically rectangular domain
 - ◊ Two halves of top edge "fold" together
 - \diamond V-velocity changes sign across the fold
- Improved thermobaricity
 - No single reference state is approriate for the global ocean
 - ◊ Hallberg, Ocean Modelling, 8, 279-300
 - Use a linear combination of two out of three reference states
 - \diamond Atlantic (3°C, 35.0 psu)
 - \diamond Arctic/Antarctic (0°C, 34.5 psu)
 - ◊ Mediterranean (13°C, 38.5 psu)
 - Most locations use just one reference state
 - Linear combinations allow smooth transition between states
 - · Do this in shallow water if possible

1/12° GLOBAL THERMOBARIC REFERENCE STATE

TBARIC MAP (1=Arctic,2=Atlantic,3=Med.)

HYCOM 2.2 (IIIa)

- Mixed layer changes
 - GISS mixed layer model
 - KPP bottom boundary layer
 - KPP tuning
- Atmospheric forcing changes
 - Option to input ustar fields
 - Otherwise calculated from wind stress or speed
 - Can relax to observed SST fields
 - Improved COARE 3.0 bulk exchange coefficients
 - Black-body correction to longwave flux
 - Climatological heat flux offset, \overline{Q}_c

 $Q = (Q_{sw} - Q_{lw}) + (Q_l + Q_s) + \overline{Q}_c$

 $\diamond \overline{Q}_c$ is constant in time

 \cdot Typically based on the model's climatological SST error, times (say) -45 $Wm^{-2}/^{\circ}C$

\overline{Q}_c ADDED AFTER FIVE YEARS GLOBAL MEAN SST and SSS

\overline{Q}_c ADDED AFTER FIVE YEARS GLOBAL MEAN SST and SSH

HYCOM 2.2 (IIIb)

- Improved support for rivers
 - Still bogused surface precipitation
 - High frequency inter-annual river flow allowed
 - Add it to atmospheric precip, off-line
 - Instead of monthly climatology, or in-addition to it (flow anomalies)
 - Better control of low salinity profiles
 - Option for mass (vs salinity) flux
- Finer control over energy loan ice model
 - Melting point can be linear in salinity
 - Set ice minimum and maximum thickness
 - Set ice vertical temperature gradient
 - \diamond Or get ice surface temperature from T_a
- New diagnostics within HYCOM
 - Time-averaged fields (in archive files)
 - Synthetic instrumentation

 - surface and constant depth drifters
 - ◊ isopycnic drifters
 - Is fixed instruments and moorings

HYCOM 2.2 (IV)

- Climatological nesting now allowed
 - Start from monthly mean outer model archive files
 - Allows nested runs longer than the outer run
 - ♦ But with less accurate boundary state
 - Probably only suitable for regional nests
- Nesting no longer requires co-located grids
 - General archive to archive horizontal interpolation (curvilinear)
- Hybrid to fixed vertical grid remapper
 - Allows fixed-coordinate nests inside hybrid coordinate outer domains
 - \diamond HYCOM to (fixed-grid) HYCOM
 - ♦ HYCOM to NCOM

HYCOM 2.2 (V)

- Enhanced hycomproc and fieldproc
 - NCAR-graphics based
 - Many more color palette options
 - Can read in an arbitrary palette
 - Mark locations, and draw tracks, on plot
 - Plot diffusion coefficients and tracers (hycomproc)
 - Overlay vector and line-contours (fieldproc)
- Added fieldcell
 - Like fieldproc, but for cell-array (vs contouring)
 - Uses NCAR's map projections
 - Typically much faster than fieldproc, but can leave unfilled cells

- Diagnostic fields to netCDF and other file formats
 - Archive fields in layer space
 - On p-grid (interpolated velocity)
 - 3-D archive fields interpolated to z-space
 - \diamond On p-grid, or
 - Sampled along arbitrary tracks
 - 3-D archive fields sampled on iso-therms
 - Meridional stream-function from (mean) 3-D archive
 - In logical array space (rectilinear grids)
 - Binned to latitude bands (curvilinear grids)
 - Atmospheric forcing input fields
 - Time axis depends on ".b" file format
 - Any ".a" file with the right ".b" file structure can be converted to netCDF
 - Fields binned into lon-lat cells

HYCOM CURVILINEAR GRIDS and NetCDF

- Most basin-scale cases use a Mercator grid
 - 1-D lat & lon axes (rectilinear)
 - Handled well by many netCDF packages
- Global HYCOM's Arctic patch grid is curvilinear
- HYCOM netCDF use the CF-1.0 conventions, which support curvilinear grids
 - If latitude and longitude are 2-D grids
 - ◊ 1-D axes are array indexes
 - Longitude and latitude arrays are also in the file and identified as alternative coordinates
- Most netCDF packages are not CF-1.0 aware
 - Bin into uniform lon-lat cells off-line
 - Interpolate to a 1-D latitude and longitude grid off-line
 - General archive to archive horizontal interpolation
- Archive to archive remapper can also be used for standard (non-native) grids
 - \circ MERSEA grid is uniform 1/8 $^{\circ}$
 - \circ AOMIP grid is rotated uniform 1/2 $^\circ$

GoM NESTED TEST DOMAIN

- Same resolution nesting unexpectedly useful
 - No need to rerun large domain
 - Change atmospheric forcing (e.g. use MM5)
 - Change vertical structure
 - Tracer studies (e.g. add biology)
- 1/12°: Gulf of Mexico inside Atlantic
 - Change from 20m to 5m coastline
 - Run for Aug 1999 to equilibrate
 - Run Sep-Nov as standard test case
- Used to test advection schemes
- All needed file are prebuilt
 - o ftp://hycom.rsmas.miami.edu/awall/hycom/GOMd0.08/
 - Uses 2.1.20, and 2.1.34 is also available
 - Includes a passive tracer
- Also tested (new) climatological nesting
 - Start from monthly mean outer model archive files
 - Climatological nested boundary conditions

CANDIDATE FEATURES FOR HYCOM 2.3

- Stable-code vs new features
 - Released code-base has to be tested and stable
 - New features can be a significant improvement
 - Will add interim releases to web page
 - \diamond Features may be removed in next released code
- Fully region-independent
 - Compile once, run on any region and any number of processors
 - ◊ Run-time memory allocation
 - Might reduce performance (fewer compiler optimizations available)
 - Needed for full ESMF compliance
- Improve split-explicit time scheme
- Tidal forcing
- Diurnal heat flux cycle
- Equation of state that is quadratic in salinity
- Wind drag coefficient based on model SST
- Initial support for ESMF

HYCOM AND ESMF

- Earth System Modeling Framework http://www.esmf.ucar.edu/
 - Superstructure couples components
 - ◊ Air/Ocean/Ice/Land
 - Asynchronous I/O component
 - · Run "concurent" with model components
 - Infrastructure provides data structures and utilities for building scalable models
- Add a superstructure "cap" to HYCOM
 - Simplifies coupled systems
 - \diamond HYCOM coupled to LANL CICE sea-ice
 - Convert atmospheric field processing and the energy-loan ice model into ESMF components
 - Use ESMF for (user-level asynchronous) I/O
 - Interoperate with other ESMF compliant ocean models (e.g. Poseidon, MITgcm, MOM4)
- The initial ESMF support will be optional
 - HYCOM version 2.3
- ESMF will eventially required to run HYCOM
 - HYCOM version 3.0